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Studies are made of the unsteady flow and heat transfer characteristics in the laminar 
boundary layer about a flat plate when the oncoming free stream contains a pulsating 
component. The complete, unsteady, boundary layer equations are solved by using a 
recently-developed numerical solution procedure. A wide range of the two key external 
parameters in the free stream, i.e., the amplitude of pulsation, A, and the frequency 
parameter = E--cox*/Uol, is dealt with in the present numerical computations. Compre- 
hensive and systematically organized numerical computational results have been acquired, 
providing descriptions of the details of unsteady flow and thermal fields. The present 
numerical results indicate consistency with the available data based on the previous 
linearized analytical predictions in the limits of ~<<1 and =>>1. When the frequency 
parameter = is small, the flow in the entire depth of the boundary layer exhibits a phase 
lead over the oncoming free stream. The present computational results supply the details 
of the behavior of flow and skin friction in the range of intermediate values of = and for 
finite values of A. The thermal structure is scrutinized by using the computed results. The 
mean temperature field is found to be substantially unaffected by the presence of the 
pulsating component. For small values of =, both the skin friction and heat transfer are in 
phase with each other. However, as = increases, the conventional Reynolds analogy is 
shown to be inapplicable. 
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I n t r o d u c t i o n  

Considerable interest has recently been shown on the general 
characteristics of unsteady viscous flows about a body (see, e.g., 
Telionisl). Attempts to predict the flow by analytical means 
have encountered formidable difficulties due to the inherent 
complexities stemming from the basic flow unsteadiness; and 
the lack of comprehensive and validated experimental measure- 
ments data has been a major obstacle for a rapid progress in 
research in this area. However, it is now obvious that an 
improved understanding of unsteady phenomena is essential 
to develop high-performance fluid machinery, aircraft, and 
rotorcraft, to name a few. 

Most of the prior work has dealt with the cases of two- 
dimensional external flow about a fixed body, when the 
oncoming free stream contains a time-dependent part. The bulk 
of the previous investigations treated unsteady, incompressible, 
two-dimensional boundary layer flows, and only a few cases 
considered the attendant heat transfer (Lighthill, 2 Pedley, 3 
Ackerberg and Phillips, + etc.). Because ofthe limited computing 
capabilities in the past, these studies were largely theoretical in 
nature, and the analyses were restricted to greatly simplified 
situations for the ease of mathematical tractability. This also 
implies that critical assessments of these simplified predictions 
have not been checked against other reliable results based on 
more elaborate computational schemes. 

One of the canonical flow configurations is the motion past 
a semi-finite flat plate when the oncoming free stream velocity 
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Ue contains a pulsating component, i.e., 

Ue= U,,(1 +A cos cot*) (1) 

where co is the pulsation frequency, t* is the dimensional time 
and A is the amplitude of pulsation. Also, the plate is maintained 
at constant temperature Tw and the free stream temperature at 
Too. The fluid motion described above is essentially the well- 
known Blasius flow with a time-dependent harmonic oscillation 
superimposed. The geometrical simplicity of the flow con- 
figuration affords a rich testing ground for analytical manipu- 
lations; consequently, we can concentrate on the flow and heat 
transfer structures affected by the unsteadiness, without having 
to be embroiled with the complicated auxiliary features. In 
addition, this simple flow provides a host of practical appli- 
cations in realistic industrial environments; such unsteady 
fluctuations superimposed on the Blasius flow are of frequent 
occurrence in fluid machinery, and in the laboratory they can 
be relatively easily realized by acoustic means. 

For the classic model problem flow of Equation 1, Lighthill 2 
presented an extensive theoretical exposition for the cases when 
the fluctuating amplitude A is small. This led to a linearization 
of the problem formulation. The results of his elaborate 
analytical investigations disclosed that the maxima of skin 
friction at any point anticipated the maxima of the stream 
velocity. He also revealed that different flow regimes could be 
observed depending on whether the pulsating frequency co was 
greater or smaller than the critical frequency co¢. Lighthill 
proceeded to predict that the maxima in heat transfer lagged 
behind those of the stream velocity. In summary, the principal 
findings that had emerged out of the pioneering analyses of 
Lighthill set the stage for the subsequent analytical attempts 
for a class of unsteady boundary layer flows, s Following the 
analytical methodologies expounded by Lighthill, 2 Ackerberg 
and Phillips + conducted asymptotic and numerical analyses of 
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cox*/Um 
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the linearized (A << 1) unsteady boundary layer equations. They 
obtained asymptotic solutions in the limits = [ = cox*/U=] ~ 0 
and = ~  00, where x* denotes the coordinate in the plane of 
the fiat plate from the leading edge. Using generally similar 
mathematical approaches, Pedley 3 extended the analyses to the 
cases when the restriction A << 1 was relaxed. He demonstrated 
that two expansion schemes were obtainable for the limiting 
cases of small and large values of ~. It was shown feasible 
that an overlapping region between the above two limits 
could be mapped out by constructing a suitable mathematical 
asymptotic representation. 

The previous work cited above has substantially deepened 
our knowledge on the overall dynamic characteristics germane 
to the unsteady boundary layer exemplified by Equation 1. 
However, these studies were highly theoretical and limited in 
scope. A number of simplifying assumptions had to be invoked 
during the course of analysis. 

A review of the above mathematical treatises clearly suggests 
that independent and more thorough investigations of the flow 
posed in Equation 1 by other means would be of great 
usefulness. The outcome of such studies will be valuable to 
cross-check the predictions of the above highly simplified 
theoretical accounts and enable us to describe the flow structure 
over a broad range of the parameter values. On the experimental 
side, as observed by Kwon, Pletcher, and Delaney, 6 accurate 
data based on laboratory measurements are scarce in the 
literature. As to the flow described by Equation 1, Hill and 
Stenning 7 presented rudimentary experimental data of the flow 
structure which were obtained by using a simple open-circuit 
suction type wind tunnel. 

One remaining promising approach is obtaining direct num- 
erical solutions to the appropriate boundary layer equations. 
Owing to the extreme complexities involved in computing 
the unsteady flows over a broad range of external con- 
ditions, constructing a widely applicable and versatile numerical 
algorithm is a formidable undertaking. However, the recent 
progress in computational capabilities has facilitated the advent 
of a reliable numerical solution procedure to calculate the 
unsteady boundary layer flows on a simple geometry. Among 
others, in a series of publications, Kwon et al. 6"8 presented a 
new and powerful numerical methodology to tackle the general 
unsteady, two-dimensional boundary layer flows. This solution 
procedure utilized the primitive variables and used an extension 
of the fully implicit numerical algorithm. 6 They devised a 
numerical model applicable to both laminar and turbulent 
boundary layers. In an effort to verify the accuracy and 
capabilities of their numerical model, they made several sample 
calculations of well-established simple unsteady flows. The 
computed results exhibited generally satisfactory agreement 
with the available measured data and/or analytical solutions 

for the sample flows. These favorable comparisons have clearly 
demonstrated the usefulness and effectiveness of the numerical 
solution procedure of Kwon et al. 6"s to examine a variety of 
unsteady boundary layer flows. 

The purpose of the present study is to carry out a compre- 
hensive and in-depth examination of the laminar unsteady flow 
given by Equation 1 by numerically integrating the complete 
nonlinear time-dependent boundary layer equations. Since the 
fully numerical approaches are exploited, no restrictions, in 
principle, on the magnitude of A (except that 0 < A < I )  or 
o~ will be made. One of the primary objectives is to depict 
the full details of the time-averaged velocity and temperature 
structures over wide ranges of the frequency o~ and the 
amplitude of pulsation A. This information will provide a 
valuable check to validate the theoretical predictions which 
were obtained under several restrictive assumptions, i.e., A << 1, 
ct << 1 and ~t >> 1, etc. Of special interest is the description of the 
unsteady behavior of the skin friction and the heat transfer on 
the plate, both in terms of the amplitude variations and the 
phase differences. We will be particularly concerned with the 
flow and heat transfer characteristics when the frequency 
parameter ct [ = o ~ x * / U j  takes moderate values in between the 
limits ct<< 1 and ~t>> 1. This has not been dealt with by the earlier 
analytical investigations, and it is important to illustrate the 
flow structures covering the entire range of the frequency values. 
By resorting to full-scale numerical calculations, we intend to 
fill the gap with the precise flow data linking the two extreme 
cases of small and large ct. In the present study, emphasis 
will also be placed on the effect of finite values of A on the 
overall flow and heat transfer characteristics. This capability is 
significant in that the previous analytical methodology had 
been constrained by the requirement A << 1. 

The numerical solution techniques adopted in the present 
paper follow closely those given by Kwon et al. 6 The principal 
dynamic features peculiar to the unsteady boundary layer flows 
about a flat plate will be clearly identified and discussed. The 
numerical results of this paper will furnish useful source 
materials on the flow details; the results of future endeavors, 
numerical or experimental, can be compared against this 
information to assist in checking the consistency of their data. 

T h e  p r o b l e m  f o r m u l a t i o n  

We introduce the two-dimensional Cartesian coordinates, with 
the semi-infinite flat plate coinciding with the x axis, and the 
y axis perpendicular to the plate at the leading edge. The 
complete unsteady, incompressible laminar boundary layer 
equations, in properly nondimensionalized form, are well 
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known (e.g., Sehlichting9). 

0--u+0u=0 (2) 
0x Oy 

__ __ _ _ a u  du du aU,_~ 02u 
(3) 

O0 O0 O0 1 020 
- - + u  - - + v  - (4) 
Ot Ox Oy Pray  2 

In the above, u and v are the velocity components in the x and 
y directions; U, denotes the free stream velocity at the boundary 
layer edge condition, expressed in Equation 1; 0 the temperature; 
Pr the Prandtl number (Pr = v/x, v the kinematic viscosity, and 
x the thermal diffusivity). In the present problem formulation 
for an incompressible flow, the viscous dissipation has been 
neglected and all the physical properties are taken to be 
constant. 

In view of the imposed unsteady free stream velocity, the 
nondimensionalization has naturally been based on using the 
following reference values for the respective dimensional physical 
quantities (starred) 

u=-u*/U,, x - x * / L ,  t - - t* / (L/U,)  

v=_v*/(RL-1/2.U=), y=_y*/(RL-I/2.L) 

where RL--U,.L/v and the nondimensional temperature 
O=(T*-T~) / (Tw-T~o) ,  where T* denotes the dimensional 
temperature and To and Tw the temperatures of the free stream 
and of the wall, respectively. The characteristic streamwise 
length scale L is chosen such that L defines the extent of the 
computational domain in the streamwise direction. 6"8 

The associated boundary conditions are 

at y=0 ,  u(x, O, t )=0  (5a) 

v(x, O, t)=O (5b) 

O(x, O, t )= 1 (5c) 

as y - * m ,  u ( x , y , t ) - - . l + A c o s e t / x  (5d) 

O(x, y, t)--,O (5e) 

Note that the velocity boundary condition at the edge of the 
boundary layer, Equation 5d is derived as a result of the 
above-stated nondimensionalizations adopted in the present 
paper. As is clear in Equation 5d, the effects of the pulsating 
free stream are characterized by the two nondimensional 
quantities, i.e., A, the amplitude of pulsation, and the frequency 
parameter e = ~ox*/Um. 

The significance of the dimensionless frequency parameter 
was brought into focus by the earlier theoretical analyses. 3'4 It 
was shown that e was used as the key expansion parameter 
such that the property of the solution in the limiting cases 
of e---,0 and c¢~ oo could be determined. In the present 
problem formulation, therefore, there exists a certain degree of 
equivalence of small x* with small ~o and large x* with 
large co. 4 It is also important to recognize that, due to the 
nondimensionalization schemes, the pulsating component is 
expressed by a combination ofx and t, as shown in Equation 5d. 

The main task is to find a suitable numerical solution 
technique for the system of partial differential equations 2-5; 
the technique should be flexible enough to be applicable over 
a wide range of the externally specifiable parameters A and e. 

N u m e r i c a l  m e t h o d  

The numerical solution schemes that were adopted in the 
present paper are essentially based on those documented 

by Kwon et al. 6 Full details, including the finite-difference 
representations of all the terms in Equations 2-5, were succinctly 
described by Kwon et al. (see equations 13-16 of Ref. 6). The 
readers are referred to the above-cited papers for the highlights 
of the numerical model development. 

The finite-difference equations were solved effectively by the 
block-elimination method discussed by Cebeci and Bradshaw 1° 
and Bradshaw. H This methodology calls for local iterations 
to obtain the solutions that satisfy the governing equations 
simultaneously at each streamwise station. In the present 
numerical computations, typically 4-5 iterations were required 
for the local iteration to achieve the convergence criterion, 
i.e., the variations of streamwise velocity gradient at the 
wall between two successive iterations should be less than a 
prescribed accuracy level (10 -6 in the present study). At the 
initial instant, the well-known steady solution was used as 
the initial state conditions. Usually, the temporarily periodic 
solution was attained after 4-6 cycles of pulsating oscillations. 
The time resolution of the solutions was such that 80 time steps 
constituted one pulsating cycle. The spatial mesh used was 
typically 101 × 51 in the x-y computational domain. 

R e s u l t s  a n d  d i s c u s s i o n  

As mentioned previously, the unsteady flow conditions that are 
externally specifiable are A and cc in Equation 5d. In an effort 
to produce comprehensive and systematic results in broad 
ranges of parameters, values of the frequency parameter = up 
to 15.0 were selected for computations. The Prandtl number 
was set Pr = 0.72 to model air. Three different values of the 
amplitude factor A, A=0.01, 0.10 and 0.20, were used in the 
calculations. These values were chosen in order to validate the 
earlier linearized theoretical predictions (i.e., by using A = 0.1), 
and to explore the nonlinear regimes as the pulsating amplitude 
A increases accordingly. It should be remarked that, in view 
of the nature of the oncoming free stream, significant flow 
reversals are possible, especially near the plate, when A increases 
to an appreciable value. In fact, for the actual computations, 
considerable numerical difficulties were encountered in obtaining 
converged solutions when A exceeded about 0.5. These practical 
considerations preclude the cases when A takes values close to 
the top end of the range 0 < A < 1. 

The major computed results on the flow and heat trasfer 
structures will be displayed by plotting the amplitude and phase 
angle of the physical quantity of interest relative to the 
oncoming free stream oscillation. This method was utilized 
previously by Cebeci? 2 

T h e  v e l o c i t y  f i e l d  

One principal physical variable of interest is the velocity 
component in the streamwise direction, u. We now express u as 

u =Um + Aul COS(Ca/x + 4~u), 

in which u= denotes the time-averaged distribution, ul the 
normalized amplitude of the pulsating part, and ~b, the phase 
angle relative to the free stream oscillation. 

Figure 1 exemplifies the profile of u=. It is evident that the 
averaged velocity profile remains virtually unaffected by the 
presence of the pulsating part in the free stream. Figure 1 serves 
the additional purpose to give credence to the accuracy and 
reliability of the present numerical solutions. As pointed out 
by Kwon et al., 6 the structure of u., is largely similar to that 
of the standard steady-state Blasius solution, and Figure 1 bears 
out this point. It is also important to observe that, for the entire 
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Figure I Exemplary profile of the mean streamwise velocity, u~ 
, the present calculations; . . . . .  , the standard Blasius solution; 

- - - ,  calculations of Ref. 6; O, measurement data of Ref. 7 
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Figure 2 (a) Amplitude of the fluctuating part of the streamwise 
velocity, ul for large values of =. , the present calculations, 
A =0.1, ==4.72; - - - ,  calculations of Ref. 14, ,4 =0.1, ==4.98; O, 
data of Ref. 7, A =0.09, ==4.98. (b) Phase of the fluctuating part 
of the strsemwise velocity, ~ ,  for large values of =. - - ,  the present 
calculations, A = 0.1, = = 4.72; - - - ,  calculations of Ref. 14, A = 0.1, 
==4.98; O, data of Raf. 7, A =0.09, ==4.98 

set of the runs computed, the um profile is substantially 
independent of A and ~. 

In order to further verify the present numerical results, 
computations were performed using the parameter values 
similar to those available in the published experimental data. 7 
The amplitude of the pulsating part u~ and the phase angle ~b= 
are depicted in Figures 2(a), 2(b) and 3(a), 3(b), each of which 
is representative of the flow pattern for a high frequency and 
a low frequency oscillation, respectively. As demonstrated in 
these figures, the computed results are found to be consistently 
in broad agreement with the available data obtained by other 
means. ~2J3'14 In particular, in the high frequency regime, the 
present results satisfactorily reproduce the maximum oscillation 
amplitude and minimum phase angle, which are the character- 
istic features of a pulsating Blasius flow. The published data in 
the literature are rather limited, but the comparisons illustrated 
here establish the capability and correctness of the present 
numerical solutions over a wide range of the parameter space. 

We shall now turn to the depiction of the complete flow 
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Figure 3 (a) Amplitude of the fluctuating part of the streamwise 
velocity, u 1, for small values of =. - - ,  the present calculations, 
A =0.1, ==0.094; . . . . .  , calculations of Ref. 14, A =0.1, ==0.103; 
- - - ,  calculations of Ref. 13, A = 0.15, = = 0.103; O, data of Ref. 7, 
A = 0.15, = = 0.103. (b) Phase of the fluctuating part of the stream- 
wise velocity, ~,, for small values of =. , the present calculations, 
A=0 .1 ,  ==0.094; . . . .  , calculations of Ref. 14, A=0 .1 ,  ==0.103 
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Figure 4 Profiles of ul. Curve 1, ==0.09; 2, ==0.47; 3, ==0.94; 4, 
= = 1.41; 5, = = 2.36; 6, = = 3.30; 7, = = 9.43. The values of A for this 
run is 0.1, however, the behavior of u~ is found to be insensitive to 
the variations of A 
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Figure 5 Profiles of q~l. Curve 1, ==0.09; 2, ==0.47; 3, ==0.94; 4, 
==1.41; 5, ==2.36; 6, ==3.30; 7, ==9.43. The values of A for this 
run is 0.1, however, the behavior of ~ is found to be insensitive to 
the variations of A 

details afforded by the present numerical computations. Figures 
4 and 5 exhibit the results of an extensive parametric study 
delineating the behavior of the pulsating part of the flow over 
a wide range of = for A = 0.1. The computed results are found 
to be insensitive to the variation of A; Figures 4 and 5 exemplify 
the overall trend of the oscillatory velocity component. 

For low values of =, the influence of the imposed free stream 
oscillation is comparatively minor in the region close to the 
plate. The magnitude of the oscillatory part of the velocity 
increases with y. The oscillation amplitude reaches a maximum 
at a moderate value of y, and for y beyond this maximum 
point, the oscillation amplitude monotonically decreases toward 
the value of the oncoming free stream oscillation. The phase 
angles are entirely positive for these situations, indicating that 
a phase lead takes place for the velocity field in the whole region 
of the boundary layer. The phase lead decreases with increasing 
y, and as expected, it decays to zero near the edge of the 
boundary layer. 

As • increases, the maximum amplitude increases until 

reaches a critical value of approximately 1.5. As • increases 
further beyond this value, the maximum amplitude is somewhat 
smaller, and the y location for maximum ul, Y~x, moves rather 
close to the plate. At large values of ~, the phase lead at the 
plate tends to converge to a value of 45 degrees, but a phase 
lag exists in the outer portion of the boundary layer. As is 
intuitively clear, at very large vaiues of =, the bulk of the 
boundary layer oscillates in tune with the imposed free stream 
oscillation, i.e., ul -* 1, 0 , - ,  0, except in a narrow strip adjacent 
to the solid plate. Physically speaking, the fluid in the near 
vicinity of the plate oscillates with a ~/4-rad phase lead relative 
to the free stream oscillation, but the influence of the plate 
quickly diminishes as y increases. 

As to the phase difference of the velocity field, Lighthill 2 
proposed plausible explanations based on an insightful physical 
reasoning. He argued that the additional pressure gradient 
required to accelerate the main stream was responsible for the 
phase lead, and the phase lag was caused by the inertia of the 
fluid resisting the quasi-steady fluctuations. In the inner portion 
of the boundary layer close to the plate, the former effect is 
dominant, thus a phase lead results; on the other hand, in the 
outer portion of the layer, the latter effect slightly outweighs 
the former, which produces a smaU phase lag. The computed 
velocity field shown in Figures 1-5 is supportive of the principal 
contentions of the theoretical expositions cited above. 

A physical quantity of great interest in engineering appli- 
cations is the wall shear stress, Cf. In a manner similar to the 
previous developments, 4'~2':5 Cf is written as a sum of the 
time-averaged part and the oscillating part, i.e., 

Cf = Cf . [  l + A cf .Cf~ cos(~t/x + qSc) ] 

Figures 6(a)-(c) display the variations of Cf=, Cfl, and dpc 
as functions of ~. As is discernible in Figure 6(a), when the 
amplitude of the free stream pulsation, A, is small, Cf= is 
virtually indistinguishable from the value for the standard 
Blasius solution over the entire range of a. However, as A 
increases, the dependence of Cfm on = becomes apparent. In 
general, the maximum of Cf= is achieved at very low frequencies, 
and the minimum of Cf,~ is seen at moderate values of g. No 
published data by other means of investigations on the behavior 
of Cfm are available in the literature. Figure 6(b) illustrates the 
magnitude of the oscillating part of the skin friction. The 
computational results have been over-plotted to demonstrate 
the satisfactory agreement with the other calculated data. x°,t5 
It is evident that the oscillatory part contained in the skin 
friction increases almost linearly with =. The present calculations 
also indicate that this behavior is virtually independent of A. 
The variation of ~bc is plotted in Figure 6(c), exhibiting close 
agreement with the other available computational results. As 
anticipated, Oc increases rapidly with = in the low-frequency 
region, say, u<0.7;  however, 0c approaches rather slowly the 
limiting value of 45 degrees as a increases beyond 0.7. The 
general behavior of Cf shown in Figure 6 is qualitatively 
consistent with the earlier theoretical solutions in the limiting 
cases of small and large values of ~. 

Temperature f ie ld 

We now shift our attention to the question of heat transfer 
from the plate to the fluid. Only a few authors have addressed 
the issue of heat transfer in an unsteady boundary layer. The 
published data on heat transfer are scanty; we note with interest 
that Pedley 3 presented a highly mathematical account to 
determine the heat transfer rate in two extreme circumstances, 
i.e., when ,, --, 0 and = --, ~ .  The nurn~xal  approach taken in 
the present study has the advantage that the precise information 
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Figure 6 (a) Variation of the mean skin friction, Cf~,, with = at 
x =  1.0. - - - ,  A =0.01; . . . . .  , A =0.1; - - - ,  A =0.2. (b) Variation of 
the oscillating amplitude of skin friction, Cf~/Cf=, with =. - - ,  the 
present calculations; . . . . .  , calculations of Ref. 1 2 ;  . . . .  , calculations 
of Ref. 15. (c) Variations of the phase of the oscillating part of skin 
friction, ~c, wi th =. , the present calculations; . . . . .  , calculations 
of Ref. 15; - - - ,  calculations of Ref. 12; . . . . .  , predictions of Ref. 4 

on the thermal field is obtainable simultaneously with the flow 
field data. The temperature 0 and the Nusselt number Nu are 
decomposed into a time-averaged quantity and an oscillating 
part; 

0 = 0,, +,40, cos(~t/x- 4o) 

Nu =Nu.[l + A NUu: COS(=t/x-~pN) ] 

The temperature structure is illustrated in Figures 7, 8, and 9. 
As shown in Figure 7, the time-averaged temperature profile 
0.  is substantially unaffected by the free stream oscillations, 
maintaining a profile almost indistinguishable from the steady- 
state similarity solution. The oscillatory part of the temperature 
field, 01, displays the characteristic feature that the maximum 
of 01 occurs in the mid-depth region of the boundary layer. 
The magnitude of the maximum of 0, is largest when = takes 
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Figure 7 Exemplary profile of the computed mean temperature, e,. 
, the similarity solution; - - - ,  A = 0 . 1 ;  . . . . .  , , 4  = 0.2 
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Figure 8 Profiles of 01. Curve 1, ==0.09; 2, ~=0.47; 3, ==0.94; 
4, = = 1.41; 5, = = 2.36; 6, = = 3.11. The values of A for this run is 0.1, 
however, the behavior of 01 is found to be insensitive to the variations 
of A 
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Figure 9 Profiles of ~s. Curve 1, ==0.09; 2, ==0.47; 3, = =0.94; 
4, = = 1.41; 5, = = 2.36; 6, = = 3.11. The values of A for this run is 0.1, 
however, the behavior of ~e is found to be insensitive to the 
variations of A 
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Figure 10 (a) Variations of the mean Nusselt number, Nu~, with 
= for A = 0 . 1  at x = l . 0 .  - - ,  the present calculations; . . . . .  , 
predictions of Ref. 3 for the high-= limit; - - - ,  predictions of Ref. 
3 for the low-= limit. (b) Variations of the mean Nusselt number, 
Nu=, with = for A = 0 . 2  at x = l . 0 .  - - - ,  the present calculations; 
. . . . .  , predictions of Ref. 3 for the high-= limit; - - - ,  predictions of 
Ref. 3 for the low-= limit 

a moderate value, around =_-  1.2. The phase of the temperature 
field generally increases mildly as y approaches the wall. 

Figures 10(a),(b) plot the variation of Num versus ct, together 
with the analytical solutions of Pedley 3 in the two limits. The 
present numerical results are clearly corroborative of the 
theoretical predictions of Pedley. The analytical formalism of 
Pedley apparently fails to produce a viable solution in the 
overlapping region linking the two extreme limiting solutions, 
and the difficulty with Pedley's solutions appears to become 
more pronounced as A increases. The behavior of the oscillatory 
part in heat transfer is shown in Figures 1 l(b),(c). The profiles 
of Nul, and ON are insensitive to the magnitude of A. Inspection 
of Figures 6 and 11 reveals that the phase of heat transfer differs 
from that of the skin friction. 

In order to ascertain the relationship in the phases of skin 
friction and heat transfer, Figure 12 shows the computed 
periodic solutions of wall shear stress and Stanton number, 
St [-qw/peCp(Tw-T®)Ue], at the same streamwise location. 
As is clearly discernible in Figure 12, for small values of ~, both 
the skin friction and heat transfer execute the periodic cycle in 
tune with each other. However, for moderate and large values of 
ct, the characte~ of these two shows considerable discrepancies. 
As ~ increases, the skin friction coefficient increases in magnitude 
and advances slightly in phase, but the heat transfer displays 
a generally opposite trend. Notice that, as shown in Figure 
12(d) for == 3.1, the phase difference between the two attains 
180 degrees. This clearly points to the conclusion that the 
quasi-steady Reynolds analogy holds good only for very small 
values of ~t; the often-cited Reynolds analogy loses its validity 
as the value of = becomes appreciable. This finding, based on 
detailed and explicit numerical examinations of the present 
study, gives strong support to the observations made by 
Lighthill 2 and Kwon et al. 6 
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Figure 11 (a) Variat ion of the mean Nusselt  number, NUN, wi th  = 
at x = l . 0 .  , A = 0 . 0 1 ; - - - ,  A = 0 . 1 ;  . . . . .  , A = 0 . 2 .  (b) Variat ion 
of the oscillatory amplitude of Nusselt number• Nul/Nu,~ with =. 

• A = 0 . 0 1 ;  . . . . .  , A = 0 . 1 ;  - - - ,  A = 0 . 2 .  (c) Variation of the 
phase o f  the osci l lat ing part o f  Nusselt  number, ~)N, w i th  =. , 
A =0 .01 ;  . . . . .  , A =0 .1 ;  - - - ,  A = 0 . 2  

C o n c l u s i o n s  

Comprehensive and systematic numerical calculations have 
been made of the unsteady boundary layer equations about 
a Blasius flow with a periodic fluctuating component. The 
numerical computations were conducted to acquire accurate 
details of the flow and thermal structures over wide ranges of 
the parameter values. 

The profiles of the mean streamwise velocity are found to be 
quite similar to the standard Blasius solution. The computed 
results of the fluctuating parts of the streamwise velocity are 
consistent with the previous theoretical results in the limits of 

<< 1 and = >> 1. For small values of =, there is an overall phase 
lead across most of the boundary layer. 

The computational results of the skin friction indicate that 
the maximum of Cf ,  is achieved at very small values of =, and 
the minimum of Cf ,  occurs at moderate values of,,. The general 
behavior of the fluctuating part of the skin friction exhibits 
consistency with the theoretical solutions in the limiting cases. 

The details of the thermal structure are examined by using 
the computational results. The field of the mean temperature 
is substantially unaffected by the presence of the pulsating 
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Figure 12 Time-histories of Cf and Stanton number, St, over a 
pulsating cycle. A=0.2,  (a) ==0.09; (b) ==1.04; (c) ==2.07; (d) 
==3.11 

component.  The amplitude of the fluctuating part is largest 
when ~ takes moderate values. 

For  small values of =, both the skin friction and heat transfer 
execute the periodic cycle in tune with each other. However, as 

increases, the conventional Reynolds analogy, which is 
applicable when u is small, loses its validity. 
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Heat transfer to a continuous moving flat 
surface with variable wall temperature 
S. T. Revankar 
Department of Nuclear Engineering, Purdue University, West Lafayette, IN, USA 

Transient heat transfer from a continuous moving flat surface with varying wall temperature 
is studied. Numerical results are presented for the transient temperature profiles and heat 
transfer rates from the wall for Prandtl numbers varying from 0.01 to 1000. Asymptotic 
solutions for steady state heat transfer rates for large Prandtl number are also presented. 

Koyword$: continuous moving plate; transient and steady-state heat transfer; varying 
wall temperature 

I n t r o d u c t i o n  

The study of  heat transfer or mass transfer to and from a 
continuous fiat surface moving at high speed is of considerable 
practical interest. Such systems are used in the fabrication of 
sheet glass, steel plates, paper drying, electrotinning of steel 
sheets and copper wire, hot rolling, hot extrusion, cold extrusion 
and continuous casting. Sakiadis 1-3 was the first to study this 
class of boundary layer problem, where a numerical solution 
was obtained for two-dimensional flow induced by a long 
moving plate or cylinder using similarity transformation. 
Experimental investigations of the flow field were made by Tsou 
et al. 4 and Griffith. s Numerical solutions of the steady-state 
thermal boundary layers on the continuous fiat surface have 
been obtained by Tsou et al., 4 Rhodes and Kaminer, 6 Erickson 
etal . ,  7 and by Rotte and Book, s Bourne and Elliston, 9 and 
Karmis and Pechoc ~° in case of cylindrical surfaces. In these 
works the thickness of the plate or material was considered to 
be negligibly small as compared to the distance along the 
surface. Griffin and Throne 11 have reported an experimental 
study of heat transfer from a continuously moving belt in air. 
Their results were in agreement with the theoretical results of 
Erickson etal .  7 

However, in cases such as in continuous casting, the thickness 
of the emerging plate is finite; hence, one has to consider the 
conduction within the plate. Karwe and Jaluria ~2J3 have 
included the conjugate transport resulting from conduction 
within finite size plate while analyzing the heat transport from 
a continuous moving plate. In case of continuous extrusion of 
the polymer from a die, the thin polymer sheet or filament 
constitute a continuous moving solid with a nonuniform surface 
velocity and temperature. ~4 Soundalgekar and Murty ~s used 
power law surface temperature to investigate steady-state heat 
transfer from a continuous moving surface. Jeng et al. 1~ further 
considered orbitrary surface velocity and nonuniform surface 
temperature for this problem. 

As the analysis of the boundary layer near continuously 
moving surface is similar for the cases of heat transfer and mass 
transfer, the results obtained for heat transfer characteristics 
can be used in case of mass transfer by replacing the Prandtl 
and Nusselt numbers respectively by Schmidt and Sherwood 
numbers. Chin 17 presented an asymptotic solution valid for 
large Schmidt numbers for mass transfer to a continuously 

Address reprint requests to Dr. Revankar at the Department of 
Nuclear Engineering, Purdue University, West Lafayette, IN 47907, 
USA. 
Received 13 September 1988; accepted 16 June 1989 

© 1989 Butterworth Publishers 

moving plate under laminar conditions. Gorla has studied the 
transient mass transfer to a continuous moving plate with step 
change in surface concentration Is and with step change in 
surface mass flux 19 using similarity transformation. These 
results can be used for heat transfer case with uniform wall 
temperature and uniform heat flux condition. 

As this proble m is of interest to both heat transfer and mass 
transfer cases, the present note considers transient heat transfer 
from continuous moving plate with step change in variable wall 
temperature. The variation in wall temperature considered is 
Tw-7"= =Ax", where A is constant. For such a power law 
variation on wall temperature or mass concentration, the 
similarity formulation holds good. 19"2° The results arc presented 
for a range of Prandtl number from 0.01 to 1000 and n>0.  In 
the formulation it is assumed that the plate thickness is 
negligibly small compared with its length, hence the conduction 
within the body of the plate is neglected. In the case of 
the plate being heated from the ambient fluid, the surface 
temperature can be well represented by the power law variation 
from the leading edge, assuming constant surface heat transfer 
coefficient. The present results are also useful for the case of 
mass transfer to the plate such as in electroplating, t7 Flows 
with large Prandtl number may result in chemical processing 
of hydrocarbons and silicone polymers. 21 Also, large Schmidt 
number is encountered in mass transfer case. Hence, asymptotic 
steady state solutions at large Prandtl number are also presented. 

T r a n s i e n t  s o l u t i o n  

The momentum and energy equations governing the heat 
transfer from a continuously moving plate whose variable 
surface temperature undergoes step change with time are 
similar to those equations given by Gorla 19 in case of transient 
mass transfer to a continuous moving sheet electrode. These 
equations in nondimensional form after similarity transformation 
arc  given as 

f "  + f f " = o  (1) 
2 

P . . . . .  ~0 ~20 Prf~O . . . .  
r~, - j  ~ ~=~+T__ F~ -n r~"  (2) 

The initial condition is 0(~, 0)= 0 and the boundary conditions 
are f(O)=O, i f(O)= 1, f ' (oo )=0 ,  0(0, z)= l(x) and 0(oo, z)---0. 
Here the prime denotes the differentiation with respect to r/. 
The solutions for the velocity profiles are known. 4 The energy 
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